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4.4 LEAST SQUARES
The following problem arises in almost all areas where mathematics is applied.
At discrete points xi (e.g., points in time), observations yi of an event are
made, and the results are recorded as a set of ordered pairs

D = {(x1, y1), (x2, y2), . . . , (xm, ym)} (m > 2). (4.4.1)

On the basis of these observations, the goal is to make estimations or predictions
at points that are between or beyond the observation made at xi. The problem
boils down finding the equation of a curve y = f(x) that closely fits the points
in D so that the phenomenon can be estimated at any non-observation point x̃
with the value ŷ = f(x̃).

Traditional (or Ordinary) Least Squares
When the data in D suggests a linear trend, the traditional theory revolves
around the fundamental problem of fitting a straight line to the points in D.
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f(x) = α + βx

Figure 4.4.1: Least squares line

The strategy is to determine the coefficients α and β in the equation of the line
f(x) = α+ βx that best fits the points (xi, yi) in the sense that the sum of the

squares of the vertical
†

errors ε1, ε2, . . . , εm indicated in Figure 4.4.1 is minimal.

†
Only vertical errors are considered because there is a tacit assumption that only the obser-
vations yi are subject to error or variation. The xi ’s are assumed to be errorless—think
of them as being exact points in time, which they often are. If the xi ’s are also subject to
variation, then horizontal as well as vertical errors in Figure 4.4.1 need to be considered, and
a more general theory known as total least squares would emerge. The least squares line L
obtained by minimizing only vertical deviations will not be the closest line to points in D
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The vertical distance from an observation (xi, yi) to a line f(x) = α+ βx is

εi = yi − f(xi) = yi − (α+ βxi). (4.4.2)

Some of the εi ’s will be positive while others are negative, so instead of mini-
mizing

∑
i εi, the aim is to find values for α and β such that

m∑
i=1

ε2i =

m∑
i=1

(yi − α− βxi)2 is minimal. (4.4.3)

This is the traditional (ordinary) least squares problem. The difference be-
tween this and statistical linear regression is that regression considers the yi’s
and εi’s to be random variables such that E[εi] = 0 for each i—i.e., regression

includes the hypothesis that the errors “average out to zero.”
†

You need not be
concerned with the distinction at this point—linear regression is taken up on
page 486.

Minimization techniques from calculus say that the minimum value in (4.4.3)
must occur at a solution to the system of the two equations

0 =
∂
(∑m

i=1 (yi − α− βxi)2
)

∂α
= −2

m∑
i=1

(yi − α− βxi) ,

0 =
∂
(∑m

i=1 (yi − α− βxi)2
)

∂β
= −2

m∑
i=1

(yi − α− βxi)xi.

Rearranging terms produces two equations in the two unknowns α and β(
m∑
i=1

1

)
α+

(
m∑
i=1

xi

)
β =

m∑
i=1

yi,(
m∑
i=1

xi

)
α+

(
m∑
i=1

x2i

)
β =

m∑
i=1

xiyi.

(4.4.4)

By setting A =


1 x1
1 x2
...

...
1 xm

, y =


y1
y2
..
.
ym

 , and x̂ =
(
α
β

)
, it is seen that the

two equations (4.4.4) take the matrix form ATAx̂ = ATy, which is called the

in terms of perpendicular distance, but L is nevertheless optimal in a certain sense—see the
Gauss–Markov theorem on page 491.

†
The terminology and statistical development of regression analysis was popularized by the En-
glish statistician Sir Francis Galton (1822–1911) in his 1886 publication of Regression Towards
Mediocrity in Hereditary Stature in which he observed that extreme characteristics such as
heights of taller and shorter parents are not completely passed on to their children, but rather
the characteristics of their children tend to revert or“regress” towards a mediocre point (the
mean of all children). Galton was a cousin of Charles Darwin whose book Origin of Species
stimulated Galton’s interest in exploring variation in human populations.
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system of normal equations. The normal equations are always consistent (even
when Ax̂ = y is inconsistent) because ATy ∈ R

(
AT
)

= R
(
ATA

)
.

The solution x̂ of the normal equations ATAx̂ = ATy is called a least
squares solution for the associated system Ax̂ = y (generally inconsistent)

because x̂ =
(
α
β

)
contains the coefficients in f(x) = α+ βx (the least squares

line) that provides the least squares fit. The vector ŷ = Ax̂ is the predicted or
estimated vector because its entries ŷi = f(xi) are the least squares estimates
of yi that are predicted by the least squares line. The εi’s in (4.4.2) are the
entries in the residual (or error) vector ε = y − ŷ = y −Ax̂, so∑

i=1

ε2i =
∑

(yi − ŷi)2 = ‖y − ŷ‖22 = εT ε = (y −Ax̂)T (y −Ax̂). (4.4.5)

This number is referred to as the error sum of squares, and it is denoted by SSE.

In the perfect (or ideal) situation when all data points (xi, yi) exactly lie on
L, then ε = 0, and Ax̂ = y is a consistent system. But if not all data points
are on a straight line, then ‖ε‖2 > 0, which in turn means that y −Ax̂ 6= 0,
so that Ax̂ = y represents an inconsistent system. This observation can be
helpful in identifying the matrix A involved in setting up more general least
squares problems by asking yourself, “what system is required to model an ideal
situation?” If Ax̂ = y models the “ideal” situation that is not actually realized,
then the solution of the associated normal equations ATAx̂ = ATy provides
the least squares solution.

Partitioning Sums of Squares
In addition to the error sum of squares (SSE) in (4.4.5), there are two other
relevant sums of squares. Let µ = µy = (

∑
i yi)/m and e be a column of 1’s,

and define

SST: The total sum of squares =
∑m
i=1(yi − µ)2 = ‖y − µe‖22 ,

SSR: The regression sum of squares =
∑m
i=1(ŷi − µ)2 = ‖ŷ − µe‖22 .

The relation between SST, SSE, and SSR is revealed in the following theorem.

4.4.1. Theorem. For a set {(xi, yi)} of m > 2 non-colinear data points

and for A =

 1 x1

1 x2

.

.

.
.
.
.

1 xm

 and y =

 y1
y2
.
.
.
ym

, let ŷ = Ax̂, where x̂ is the

least squares solution obtained from ATAx̂ = ATy. It is always true
that µŷ = µ = µy, and

SST = SSE + SSR. (4.4.6)
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Proof. To see that µŷ = µy, it suffices to show eT ŷ = eTy. The non-
colinearity assumption forces rank (A) = 2 so that ATA is nonsingular, and
hence the solution of ATAx̂ = ATy is

x̂ = (ATA)−1ATy =⇒ ŷ = A(ATA)−1ATy = Py, (4.4.7)

where P = A(ATA)−1AT = PT is the orthogonal projector onto R (A) (see
(4.3.18) on page 461). Furthermore, e ∈ R (A) means that Pe = e so that

eT ŷ = eTPy = eTPTy = eTy =⇒ µŷ = µy.

To prove that SST = SSE+SSR, simply verify that (y−ŷ) ⊥ (ŷ−µe) (Exercise
4.4.2) and invoke the Pythagorean theorem (page 40) to conclude that

‖y − µe‖22 = ‖(y − ŷ) + (ŷ − µe)‖22 = ‖y − ŷ‖22 + ‖ŷ − µe‖22 .

Coefficient of Determination
The significance of being able to partition the total sum of squares as indicated
in (4.4.6) can now be understood. The sample correlation coefficient between the
observed vector y and the predicted vector ŷ = Ax̂ is

r = ryŷ =
‖ŷ − µe‖2
‖y − µe‖2

=
sŷ
sy

(see (1.6.10) on page 46).

While r may be of some interest, it is not as important as r2, which is given a
special name.

4.4.2. Definition. The term

r2 = r2yŷ =
‖ŷ − µe‖22
‖y − µe‖22

=
s2ŷ
s2y

=
Var[ŷ]

Var[y]
=

SSR

SST
= 1− SSE

SST
. (4.4.8)

is called the coefficient of determination.

The utility of r2 stems from consideration of variation. The total variation
SST = ‖y − µe‖22 =

∑
(yi − µy)2 is the variation in y from its mean without

regard to variations in x. But if, for example, y tends to vary linearly with x
in a positive manner, then the yi’s generally increase as the xi’s increase, so a
more important issue is, “how much (or what percentage) of the total variation
in y is explained by the variation in x as determined by the least squares line
L? ” The term SSE = ‖y − ŷ‖22 =

∑
(yi − ŷi)2 is the variation in y that is

not explained by L (i.e., by the variation in x). Since SST = SSE + SSR, the
proportion (or percentage) of the total variation in y that is explained by L is

1− SSE

SST
=

SSR

SST
= r2.
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Goodness of Fit
A primary use of the coefficient of determination 0 ≤ r2 ≤ 1 is to assess how well
the least squares line L fits the data (xi, yi). Each data point is exactly on L if

and only if SSE = ‖y − ŷ‖22 = 0 —i.e, if and only if r2 = 1. This means that all
of the variation in y is completely explained by L. At the other extreme, r2 = 0
if and only if SSR = ‖ŷ − µe‖22 = 0, which means that none of the variation in
y is explained by L. This is equivalent to saying that L is perfectly horizontal
and that there is not a linear relationship between x and y. For example if
r2 = .85, then 85% of the variation of y is explained by L. Whether or not
this translates to saying that the L is a good fit for the data can be subjective
and application dependent, but it nevertheless provides more insight than looking
only at the raw residual SSE =

∑
i=1 ε

2
i =

∑
(yi − ŷi)2 = ‖y − ŷ‖22 .

Example (Sales Estimation)
Suppose that a company has been in business for four years, and the sales yi
for year xi (in tens of thousands of dollars) is shown in the table in Figure
4.4.2. Plotting the data points (xi, yi) for x1 = 1, x2 = 2, x3 = 3, and x4 = 4
indicates that they do not exactly lie on a straight line, but nevertheless there
is a linear trend in sales. Consequently, to predict the sales for a future year it
is reasonable to fit the linear trend with a straight line f(x) = α+βx that best
fits the data in the sense of least squares.

Year xi Sales yi

1 23
2 27
3 30
4 34

0
22
23
24
25
26
27
28

29
30
31
32
33
34

4321
Year

S
a
l
e
s

Figure 4.4.2: Linear sales trend

If sales were exactly linear, then there would exist an α and β such that

yi = α+ βxi for each i = 1, 2, 3, 4 so that

(
23
27
30
34

)
=

(
1 1
1 2
1 3
1 4

)(
α
β

)
, or equiva-

lently, y = Ax̂. But sales are not exactly linear, so εi = yi − (α+ βxi) 6= 0 for
at least one i, or equivalently, ε = y−Ax̂ 6= 0. Least squares theory guarantees
that the solution x̂ of the associated system of normal equations

ATAx̂ = ATy =⇒
(

4 10
10 30

)(
α̂
β̂

)
=
(

114
303

)
=⇒ x̂ =

(
α̂
β̂

)
=
(

19.5
3.6

)
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yields the least squares line L as

ŷ(x) = α̂+ β̂x = 19.5 + 3.6x,

which in turn provides a sales estimate for any year x—e.g., ŷ(5) = $375, 000
is the estimated sales for year five. To get a feel for how well the line L ex-
plains the observed sales over time, set ŷ = Ax̂, and compute the coefficient of
determination from (4.4.8) to be

r2 =
‖ŷ − µe‖22
‖y − µe‖22

=
64.8

65
≈ .996923.

Thus about 99.7% of the variation in sales over time is explained by L, or
equivalently, only about .3% of the variation in sales over time is not explained
by L. This suggests that the least squares model can be a good predictor of
future sales, assuming of course that the trend continues to hold.

Vector Space Theory of Least Squares
Viewing concepts from more than one perspective generally produces a deeper
understanding, and this is particularly true for the theory of least squares. While
the classical calculus-based theory of least squares as discussed earlier can be
extended to cover more general situations, it is generally replaced by a more
intuitive development based on vector space geometry. This approach not only
produces a cleaner theory, but it also brings the entire least squares picture into
sharper focus. Rather than fitting a straight line to a data set of ordered pairs,
more general least squares concerns the following problem.

• Given A ∈ Fm×n and y ∈ Fm, find a vector x̂ ∈ Fn such that Ax̂ is as
close to y as possible in the sense that ‖y −Ax̂‖22 = minx∈Fn ‖y −Ax‖22 ,
or equivalently, ‖y −Ax̂‖2 = minx∈Fn ‖y −Ax‖2 .

Since Ax̂ is always a vector in R (A), the problem boils down to finding the
vector p ∈ R (A) that is closest to y. The closest point theorem on page 463
solves this problem because it guarantees that p = PR(A)y, where PR(A) is
the orthogonal projector onto R (A). Figure 4.4.3 below illustrates the situation
in R3.

0

R (A)

y

PR (A )p= y

min
x∈Fn

y − Ax 2 = y − p 2

Figure 4.4.3: Projection onto R (A)
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Therefore, x̂ is a vector such that ‖y −Ax̂‖22 is minimal if and only if

Ax̂ = p = PR(A)y.

However, this is just the system of normal equations A∗Ax̂ = A∗y in disguised
form

†
because

Ax̂ = PR(A)y⇐⇒ PR(A)Ax̂ = PR(A)y⇐⇒ PR(A)(Ax̂− y) = 0

⇐⇒ (Ax̂− y) ∈ N
(
PR(A)

)
= R (A)

⊥
= N (A∗)

⇐⇒ A∗(Ax̂− y) = 0⇐⇒ A∗Ax̂ = A∗y.

In summary, this means that the definition of a general least squares solution
can be stated in any one of three equivalent ways.

4.4.3. Definition. A least squares solution for a system of linear equa-
tions Am×nx = y (possibly inconsistent) is defined to be a vector
x̂ ∈ Fn that satisfies any one of the following three equivalent state-
ments in which PR(A) is the orthogonal projector onto R (A).

• ‖y −Ax̂‖22 = minx∈Fn ‖y −Ax‖22 (4.4.9)

• Ax̂ = p = PR(A)y (the projection equation) (4.4.10)

• A∗Ax̂ = A∗y (the normal equations) (4.4.11)

Note that the 2× 2 system of normal equations in (4.4.4) on page 479 is
just a special case of the more general system of normal equations (4.4.11) that
results from the vector space theory.

Caution! The statements in (4.4.9)–(4.4.11) are the theoretical foundations for
least squares theory, but they are generally not used for practical floating-point
computation. Explicitly forming the product A∗A and then solving the nor-
mal equations is ill-advised because if κ is the two-norm condition number for
A, then κ2 the two-norm condition number for A∗A, (see Exercise 3.5.21 on
page 377), so any sensitivities to small perturbations (e.g., rounding error) that
are present in the underlying problem are magnified by computing A∗A (see
in Exercise 2.8.8 on page 242). Stable algorithms generally involve orthogonal
reduction techniques that are discussed later in the text

†
Note that this discussion allows for complex matrices whereas earlier discussions were restricted
to real matrices. This is because traditional linear least squares analysis is almost always in
the context of real numbers, but more general least squares applications can involve complex
matrices.
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All Least Squares Solutions
If rank (Am×n) = n, then (A∗A)n×n is nonsingular, so the system of normal
equations (4.4.11) yields a unique least squares solution given by

x̂ = (A∗A)
−1

A∗y.

But unlike the traditional problem on page 478, A need not have full column
rank, in which case there are infinitely many least squares solutions. The set of
all least squares solutions is the complete solution set for the projection equation
Ax̂ = p in (4.4.10), and Theorem 2.5.7 on page 208 ensures that this set is

S = xpart +N (A),

where xpart is a particular solution of Ax̂ = p. A convenient particular solution
is the pseudo inverse solution xpart = A†y because

A(A†y) = (AA†)y = PR(A)y = p (recall (4.3.17) on page 461).

Therefore, the set of all least squares solutions for a general system Ax = y is

S = A†y +N (A). (4.4.12)

Note that S also the solution set for Ax = y when this system is consistent
because if y ∈ R (A), then AA†y = PR(A)y = y.

Not only is A†y a particular least squares solution, it is the unique mini-
mal 2-norm solution among all least squares solutions. This follows from (4.4.12)
because if z is any other least squares solution, then z = A†y + h, where

h ∈ N (A) = R (A∗)⊥ = R
(
A†
)⊥

(recall (4.3.17), page 461), and hence the
Pythagorean theorem (page 40) yields

‖z‖22 =
∥∥A†y + h

∥∥2
2

=
∥∥A†y∥∥2

2
+ ‖h‖22 ≥

∥∥A†y∥∥2
2
,

with equality holding if and only if h = 0 —i.e., if and only if z = A†y. These
observations are summarized in the following theorem.

4.4.4. Theorem. Let Am×nx = y be a general system of linear equations.

• The set of all least squares solutions is S = A†y +N (A).

— x̂ = A†y is the minimal 2-norm least squares solution.

• If the system is consistent, then its solution set is S = A†y +N (A).

— x̂ = A†y is the minimal 2-norm solution.

• In either case, there is a unique solution (or least squares solution)
if and only if rank (A) = n, and it is given by

x̂ = A†y = (A∗A)−1A∗y.
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Linear Regression
The traditional least squares problem of fitting data points (xi, yi) to a straight
line as discussed on page 478 becomes the statistical theory of linear regression
(also called multiple regression) when the goal is to relate a random variable y
that cannot be observed exactly to a linear combination of two or more math-
ematical variables x1, x2, . . . , xn that are not subject to error or variation and
can be exactly measured or observed (e.g., x1 = the precise month of the year,
x2 = the exact time of day, x3 = your current age, etc) together with another
random variable ε such that

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε,

in which the parameters β0, β1, . . . , βn are unknown constants. The role of ε
is to account for the fact that y cannot be observed or measured exactly, or
that other factors (e.g., simplifying assumptions or modeling errors) are not

considered, but the effects of all of these errors
†

“average out” to zero in the
sense that E[ε] = 0, where E[?] denotes expected value (or mean). In other
words, the regression assumption is that the mean value of y at each point where
(x1, x2, . . . , xn) can be observed is given by

E(y) = β0 + β1x1 + β2x2 + · · ·+ βnxn. (4.4.13)

Estimating the unknown parameters βi involves making a series of m measure-
ments or observations of y and (x1, x2, . . . , xn) and hypothesizing that

yj = β0 + β1x1j + β2x2j + · · ·+ βnxnj + εj , i = 1, 2, . . . ,m, (4.4.14)

where yj and xji are the respective jth observations of y and xi, and where
εj is a random error for which it assumed that E[εi] = 0. This results in vectors
and matrices

y =


y1
y2
...
ym

, X =


1 x11 x12 · · · x1m
1 x21 x22 · · · x2m
...

...
...

...
1 xm1 xm2 · · · xmn

, β =


β0
β1
...
βm

, ε =


ε1
ε2
...
εm


such that y = Xβ + ε, or equivalently y −Xβ = ε. An estimate β̂ of β is
provided by the general theory of least squares by taking β̂ to be a vector such

that
∥∥∥y −Xβ̂

∥∥∥2
2

is minimal, or equivalently, β̂ is a solution to the system of

†
The difference between a measurement (or observation) error and a modeling error may be
significant to an experimentalist, but mathematicians and statisticians generally do not make
a distinction because they are equivalent from a mathematical standpoint.
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normal equations XTXβ̂ = XTy. Consequently, the estimate of the mean value
of y for any given set of values for (x1, x2, . . . , xn) is

Ê[y] = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂nxn, (4.4.15)

where β̂i is the least squares estimate for βi. For the least squares estimate
ŷ = Xβ̂, exactly the same analysis that led to the coefficient of determination
on page 481 holds for the more general case of multiple regression, so

r2 =
‖ŷ − µe‖22
‖y − µe‖22

, where µ = µy, (4.4.16)

can again be used to gauge the proportion of the observed vector y that is
explained by the regression model, and thus it measures the goodness of fit.

The Gauss–Markov theorem on page 491 says that under reasonable as-
sumptions about the random error ε, the least squares estimates β̂ for the β
and the estimate (4.4.15) for (4.4.13) is optimal in a particular sense. But before
getting into this, it may be helpful to look at a simple example.

Example (Stale Pop)
Everyone knows that when the unused half of an open can of soda (or “pop”
as it is called in Greeley Colorado) is put back into the refrigerator, it increas-
ingly loses its palatability the longer it is left. For a particular brand (say Coca
Cola) there can be several factors that influence this—e.g, the number of days
an opened can remains in the refrigerator, the refrigerator’s temperature, the
original level of carbonation, amounts of ingredients such as high fructose corn
syrup, artificial sweeteners, phosphoric acid, flavorings, etc. It is reasonable to
conjecture that storage time and temperature are the primary factors, and other
factors “average out,” so to predict the loss of palatability, make a linear hy-
pothesis of the form

y = β0 + β1x1 + β2x2 + ε, where E[ε] = 0
in which

y = the percent of palatability lost compared to that
of a fresh can as subjectively judged by a panel of tasters,

x1 = the number of days stored after opening,

x2 = the temperature (◦C) of the refrigerator during storage time.

In other words, the hypothesis is E(y) = β0 + β1x1 + β2x2, and producing an

estimate Ê[y] = β̂0 + β̂1x1 + β̂2x2 is accomplished by conducting experiments to

determine least squares estimates for each β̂i. The following table records the
storage times and temperatures for nine experiments along with judgements of
loss of palatability for each of these values.
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x1 = Storage Time (days) 1 1 1 2 2 2 3 3 3

x2 = Storage Temp (oC) 1 2 3 1 2 3 1 2 3

y = Palatability Loss (%) 15 16 20 17 19 22 20 23 25

The model is y = Xβ+ ε, were

y =



15
16
20
17
19
22
20
23
25


, X =



1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3


, β =

(
β0
β1
β2

)
and ε =



ε1
ε2
ε2
ε4
ε5
ε6
ε7
ε8
ε9


with the assumption that E[εi] = 0 for each i. Least squares estimates β̂i for
the βi’s are obtained by solving the normal equations

XTXβ̂ = XTy =⇒
(

9 16 18
18 42 36
18 36 42

)( β̂0
β̂1
β̂2

)
=

(
177
371
369

)
=⇒ β̂ =

(
9

17/6
5/2

)
.

In this case the coefficient of determination (to three significant places) is

r2 =
‖ŷ − µe‖22
‖y − µe‖22

= 97.3,

so more than 97% of the variation y is explained by the regression model while
less than 3% of the variation is not, and thus the least squares fit is pretty good.
For example, the regression model predicts that a half can of opened Coke stored
for three days in a refrigerator set at 4 oC is expected to lose about

β̂0 + β̂1(3) + β̂2(4) = 9 + (7/16)(3) + (5/2)(4) = 27.5%

of the palatability of an unopened can.

Least Squares Estimates are Optimal
Drawing inferences about natural phenomena based upon physical observations
and estimating characteristics of large populations by examining small samples
are fundamental concerns of applied science. Numerical characteristics of a phe-
nomenon or population are often called parameters, and the goal is to design
functions or rules called estimators that use observations or samples to estimate
parameters of interest. For example, the mean height h of all people is a pa-
rameter of the world’s population, and one way of estimating h is to observe
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the mean height of a sample of k people. In other words, if hi is the height of
the ith person in a sample, then the function ĥ defined by

ĥ(h1, h2, . . . , hk) =
1

k

(
k∑
i=1

hi

)

is an estimator for h. Moreover, ĥ is a linear estimator because ĥ is a linear
function of the observations hi.

Good estimators should possess at least two properties—they should be un-
biased and they should have minimal variance. For example, consider estimating
the center of a circle drawn on a wall by asking Larry, Moe, and Curly to each
throw one dart at the circle. To decide which estimator is best, knowledge about
each thrower’s style is required. While being able to throw a tight pattern, it is
known that Larry tends to have a left-hand bias in his style. Moe doesn’t suffer
from a bias, but he tends to throw a rather large pattern. However, Curly can
throw a tight pattern without a bias. Typical patterns are shown below.

Larry Moe Curly

Although Larry has a small variance, he is a poor estimator because he is
biased in the sense that his average is significantly different than the center.
Moe and Curly are each unbiased estimators because they have an average that
is the center, but Curly is clearly the preferred estimator because his variance is
smaller than Moe’s. In other words, Curly is the unbiased estimator of minimal
variance.

4.4.5. Definition. An estimator θ̂ (considered as a random variable)

for a parameter θ is said to be unbiased when E[θ̂] = θ, and θ̂ is
called a minimum variance unbiased estimator for θ whenever
Var[θ̂] ≤ Var[φ̂] for all unbiased estimators φ̂ of θ.

These ideas make it possible to precisely articulate the sense in which least
squares is optimal. Consider a linear hypothesis

y = β0 + β1x1 + · · ·+ βnxn + ε,

in which y is a random variable that cannot be exactly observed (perhaps due
to measurement error), the xi ’s are mathematical variables whose values are
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not subject to error or variation (they can be exactly observed or measured),
and where ε is a random variable accounting for the error. As explained in the
previous section, least squares estimates β̂i for βi are obtained by observing
values yj of y at m different points (xj1, xj2, . . . , xjn) ∈ Rn, where xji is
the value of xi to be used when making the jth observation. This produces the
linear model

yj = β0 + β1x1j + β2x2j + · · ·+ βnxnj + εj , i = 1, 2, . . . ,m, (4.4.17)

in which εj is a random variable accounting for the jth observation or mea-
surement error. Thus yj is also a random variable. A standard assumption is
that observation errors are not correlated with each other, but they have a com-
mon variance σ2 (not necessarily known) and a zero mean. In other words, it is

assumed that
†

E[εi] = 0 for each i and Cov[εi, εj ] =

{
σ2 when i = j,
0 when i 6= j.

If y =


y1
y2
.
..
ym

, X =


1 x11 x12 · · · x1m
1 x21 x22 · · · x2m
...

...
...

...
1 xm1 xm2 · · · xmn

, β =


β0
β1
...
βm

, ε =


ε1
ε2
...
εm

,
then the equations in (4.4.17) can be written as y = Xβ+ε. In practice, m > n
points (xj1, xj2, . . . , xjn) ∈ Rn at which observations yj are made can almost
always be selected to insure that X has full column rank (see Exercise 4.4.11 for
the rank-deficient case), so the complete statement of a standard linear model is

y = Xβ+ ε such that


rank

(
Xm×(n+1)

)
= n+ 1,

E[ε] = 0 (so E[y] = Xβ),

Cov[ε] = σ2I = Cov[y] (so Var[εi] = σ2 = Var[yi]),

(4.4.18)

in which

E[ε]=


E[ε1]
E[ε2]

...
E[εm]

 and Cov[ε]=


Cov[ε1, ε1] Cov[ε1, ε2] · · · Cov[ε1, εm]
Cov[ε2, ε1] Cov[ε2, ε2] · · · Cov[ε2, εm]

...
...

. . .
...

Cov[εm, ε1] Cov[εm, ε2] · · · Cov[εm, εm]

.
A primary goal is to determine the best (i.e., minimum variance) linear (lin-
ear function of the yi ’s) unbiased estimators for the components of β. Gauss
realized that this is precisely what the theory of least squares provides.

†
Recall from elementary probability that for random variables A,B and a constants a, b,

• E[aA+B] = aE[A] + E[B] (i.e., expectation is linear),

• Var[A] = E
[
(A− µA)2

]
= E[A2]− µ2A,

• Cov[AB] = E[(A− µA)(B − µB)] = E[AB]− µAµB ,
• Var[aA+ bB] = a2Var[A] + b2Var[B] when Cov[AB] = 0.
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4.4.6. Theorem. (Gauss–Markov†Theorem) For the linear model (4.4.18),

the minimum variance linear unbiased estimator β̂i for βi is the ith

component of β̂ =
(
XTX

)−1
XTy = X†y. In other words, the best

linear unbiased estimator for β is the least squares solution of Xβ̂ = y.

• Moreover, for a row tT of constants, tT β̂ is the best
linear unbiased estimator for linear combination tTβ.

(4.4.19)

Proof. It is clear that β̂ = X†y is a linear estimator because each component
β̂i =

∑
k[X†]ik yk is a linear function of the observations yk. To see that β̂ is

unbiased, use E[y] = Xβ and X† =
(
XTX

)−1
XT (see page 191) to write

E
[
β̂
]

= E
[
X†y

]
= X†E[y] = X†Xβ =

(
XTX

)−1
XTXβ = β.

To argue that β̂ = X†y has minimal variance among all linear unbiased estima-
tors for β, let β∗ be an arbitrary linear unbiased estimator for β. Linearity
of β∗ implies the existence of a (constant) (n+ 1)×m matrix L such that
β∗ = Ly so that

Var[β∗i ] = Var[Li∗y] = Var

[
m∑
k=1

likyk

]
= σ2

m∑
k=1

l2ik = σ2 ‖Li∗‖22

(see the variance formula in the previous footnote). Unbiasedness ensures that
β = E[β∗] = E[Ly] = LE[y] = LXβ for all β ∈ Rn+1, and hence LX = In+1

(Exercise 1.7.10, page 65). Therefore, Var[β∗i ] is minimal if and only if Li∗ is
the minimum norm solution for zT in the left-handed system zTX = eTi . In

general, the unique minimum norm solution is given by zT = eTi X
† = X†i∗

(Theorem 4.4.4, page 485), and thus Var[β∗i ] is minimal for each i if and only if

Li∗ = X†i∗, or equivalently, L = X†. Therefore, the (unique) minimal variance

linear unbiased estimator for β is X†y = β̂. The proof of (4.4.19) follows along
the same lines, so details are left to the reader.

†
Gauss is generally credited with realizing this theorem in 1821, but historians are ambivalent
about Markov’s contribution. Andrie Andreevich (or Andrey Andreyevich) Markov (1856–
1922) was a slow starter in school at Petrograd (now St Petersburg), Russia, but he eventually
found his stride in studying mathematics and became a student of Pafnuty Chebyshev who
stimulated his interest in probability. This led to Markov’s development of “Markov chains,”
which subsequently launched the theory of stochastic processes. Markov preferred the rigorous
side of probability theory, and he is said originally to have had a negative attitude toward
statistics—he judged it strictly from a mathematical point of view. But when his views later
softened, his interests merged to produce what eventually became known as “mathematical
statistics.” However, in the historical anthology Statisticians of the Centuries, 2001st Edition,
Eugene Seneta suggests that while Markov had an interest in statistical linear models, it may
be inappropriate for his name to be attached to this theorem.
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Least Squares Curve Fitting
When a set of observations D = {(x1, y1), (x2, y2), . . . , (xm, ym)} does not
follow a linear trend, attempting to fit the data to a straight line as described
on page 478 is not productive, so a more general approach is to fit the data to a
curve defined by a polynomial

p(x) = α0 + α1x+ α2x
2 + · · ·+ αnx

n

with a specified degree n < m that comes as close as possible in the sense of
ordinary least squares.

p(x)

x

y

(x1, y1)

(x2, y2)

(xm, ym)

(x1, p(x1))

(x2, p(x2))

(xm, p(xm))

1

2

m

•

•

•

•
•

•

•

•

•

•

•

•

Figure 4.4.4: Least squares polynomial

The same assumptions described for ordinary least squares problems as discussed
on page 478 remain in effect, and the analysis is identical to that described on
page 483. For the εi ’s indicated in Figure 4.4.4, the objective is to minimize the
sum of squares

m∑
i=1

ε2i = εT ε =

m∑
i=1

(yi − p(xi))2 = (y −Ax)
T

(y −Ax), (4.4.20)

where

A =


1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
..
.

..

.
..
. · · ·

...
1 xm x2m · · · xnm

, x =


α0

α1

...
αn

, y =


y1
y2
...
ym

 ε =


ε1
ε2
...
εm

 = y −Ax.

In other words, the least squares polynomial of degree n is obtained from the
least squares solution associated with the system Ax = b because it was demon-
strated on page 484 that a vector x̂ such that ‖y −Ax̂‖22 is minimal must
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satisfy the normal equations ATAx̂ = ATy. The least squares polynomial

p(x) = α̂0 + α̂1x + · · · + α̂nx
n defined by x̂ =

 α̂0

α̂1

.

.

.
α̂n

 is unique provided that

xi 6= xj for all i 6= j because A is a Vandermonde matrix, and it is shown on
page 60 that all such matrices have full column rank, which in turn makes ATA
nonsingular so that

x̂ = (ATA)−1ATy

is the unique least squares solution.

Example (Missile Tracking)
A missile is fired from enemy territory, and its position in flight is observed by
radar tracking devices at the following positions.

x =Position down range (miles) 0 250 500 750 1000

y =Height (miles) 0 8 15 19 20

Suppose that intelligence sources indicate that enemy missiles are programmed
to follow a parabolic flight path—a fact that seems to be consistent with the
trend suggested by plotting the observations as shown below.

10007505002500

0

5

10

15

20

x = Range

y
 =

 H
ei

gh
t

Figure 4.4.5: Missile observations

Problem: Where is the missile expected to land?

Solution: Determine the parabola p(x) = α0 + α1x + α2x
2 that best fits the

observed data in the ordinary least squares sense, and then estimate where the
missile will land by finding the roots of p to determine where the parabola
crosses the horizontal axis. In its raw form the problem will involve numbers
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having relatively large magnitudes in conjunction with relatively small ones, so
it is better to first scale the data by considering one unit to be 1000 miles. For

A =


1 0 0
1 .25 .0625
1 .5 .25
1 .75 .5625
1 1 1

, x =

(
α0

α1

α2

)
, and y =


0
.008
.015
.019
.02

,
the aim, as described on page 492, is to find a value x̂ such that

‖y −Ax̂‖22 = min
x∈R3

‖y −Ax‖22 ,

which is equivalent to solving the normal equations

ATAx̂ = ATy =⇒
(

5 2.5 1.875
2.5 1.875 1.5625
1.875 1.5625 1.3828125

)(
α̂0

α̂1

α̂2

)
=

(
.062
.04375
.0349375

)

=⇒ x̂ =

(
α̂0

α̂1

α̂2

)
=

(−2.285714× 10−4

3.982857× 10−2

−1.942857× 10−2

)
(to seven places).

Thus the least squares parabola is

p(x) = −.0002285714 + .03982857x− .01942857x2,

and the quadratic formula yields x = 0.005755037 and x = 2.044245 (to seven
places). These are where p(x) crosses the x-axis, so the estimated point of

impact (after rescaling) is 2044.245 miles down range.
†

To get a sense of how
good the fit is, compute

ŷ = Ax̂ =


−2.285714× 10−4

8.514286× 10−3

1.482857× 10−2

1.871426× 10−2

2.017143× 10−2

 µŷ = 0.0124 = µy

to evaluate the coefficient of determination from (4.4.16) on page 487 to be

r2 =
‖ŷ − µe‖22
‖y − µe‖22

=
2.807428× 10−4

2.812000× 10−4
= 0.9983743.

Therefore, about 99.84% the variation in y is explained by the least squares
parabola, so the fit is pretty good, and people who are somewhere around 2044
miles down range should seek immediate shelter.

†
Remember that the observations are not expected to lie exactly on the least squares curve, so
x = 0.005755037 is just the least squares estimate of the launch point (the origin).
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Least Squares vs. Lagrange Interpolation
For a given set of m points D = {(x1, y1), (x2, y2), . . . , (xm, ym)} in which
the xi’s are distinct, it is established on page 160 that the Lagrange interpolation
polynomial

`(x) =

m∑
i=1

yi
∏m
j 6=i(x− xj)∏m
j 6=i(xi − xj)


exactly passes through each point in D. So why would one want to settle for a
least squares fit when an exact fit is possible?

One answer is that in practical work the observations yi are rarely exact
due to small errors arising from imprecise measurements or from simplifying as-
sumption, so the goal is to fit the trend of the observations and not the uncertain
observations themselves. Furthermore, to exactly hit all data points, the interpo-
lation polynomial `(x) is usually forced to oscillate between or beyond the data
points, and as m becomes larger the oscillations can become more pronounced.
Consequently, `(x) is generally not useful in making predictions beyond the
observations. The missile tracking example on page 493 drives this point home.

The fourth-degree Lagrange interpolation polynomial for the five observa-
tions listed on page 493 is

`(x) =
11

375
x+

17

750000
x2 − 1

18750000
x3 +

1

46875000000
x4.

It can be verified that `(xi) = yi for each observation. As the graph in Figure
4.4.6 indicates, `(x) has only one real nonnegative root, so it is worthless for
predicting where the missile will land. This is characteristic of Lagrange inter-
polation.

y = �(t)

Figure 4.4.6: Interpolation polynomial for missile tracking data
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Epilogue

It was mentioned on page 479 that Sir Francis Galton introduced the concept
of linear regression, but he did not invented the theory of least squares. That
honor belongs to Carl Gauss. While viewing a region in the Taurus constellation
on January 1, 1801, Giuseppe Piazzi, an astronomer and director of the Palermo
observatory, observed a small “star” that he had never seen before. As Piazzi
and others continued to watch this new “star” (which was really an asteroid)
they noticed that it was in fact moving, and they concluded that a new “planet”
had been discovered—a really big deal back then. However, their new “planet”
completely disappeared in the autumn of 1801. Well-known astronomers of the
time joined the search to relocate the lost “planet,” but all efforts were in vain.

In September of 1801 Gauss decided to take up the challenge of finding this
lost “planet.” Gauss allowed for the possibility of an elliptical orbit rather than
constraining it to be circular—which was an assumption of the others—and he
proceeded to develop the method of least squares. By December the task was
completed, and Gauss informed the scientific community not only where the lost
“planet” was located, but he also predicted its position at future times. They
looked, and it was exactly where Gauss had predicted it would be! The asteroid
was named Ceres, and Gauss’s contribution was recognized by naming another
minor asteroid Gaussia.

This extraordinary feat of locating a tiny and distant heavenly body from
apparently insufficient data astounded the scientific community. Furthermore,
Gauss refused to reveal his methods, and there were those who even accused
him of sorcery. These events led directly to Gauss’s fame throughout the entire
European community, and they helped to establish his reputation as a mathe-
matical and scientific genius of the highest order.

Gauss waited until 1809, when he published his Theoria Motus Corporum
Coelestium In Sectionibus Conicis Solem Ambientium, to systematically develop
the theory of least squares and his methods of orbit calculation. This was in
keeping with Gauss’s philosophy to publish nothing but well-polished work of
lasting significance. When criticized for not revealing more motivational aspects
in his writings, Gauss remarked that architects of great cathedrals do not obscure
the beauty of their work by leaving the scaffolds in place after the construction
has been completed. Gauss’s theory of least squares has indeed proven to be a
great mathematical cathedral of lasting beauty and significance.

Exercises for section 4.4

4.4.1. Consider the ordinary least squares problem of fitting a straight line
y = α+ βx to m non-colinear data points (xi, yi). Let x̂ be the least
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squares solution such that ATAx̂ = ATy in which A =

 1 x1

1 x2

.

.

.
.
.
.

1 xm

,
y =

 y1
y2
.
.
.
ym

6∈ R (A), and rank (A) = 2.

(a) Show that x̂ =

(
α

β

)
=

1

∆

( ∑
x2i
∑

yi −
∑

xi
∑

xiyi

m
∑

xiyi −
(∑

xi
) (∑

yi
)),

where ∆ = m
∑
x2i − (

∑
xi)

2
= m ‖x− µxe‖22 in which e is

the vector of 1’s and µ? denotes the mean.

(b) Prove that (µx, µy) always lies on the least squares line.

Hint: Show β =
(x− µxe)T (y − µye)

‖x− µxe‖22
and α = µy − βµx.

(c) Show that β =
sxy
s2x

=
Cov[x,y]

Var[x]
= rxy

sx
s2x
,

where sx, sxy, and rxy are the respective sample standard de-
viation, covariance, and correlation as defined in (1.6.4), (1.6.10),
and (1.6.11) on pages 44–46.

4.4.2. For the least squares problem described in Exercise 4.4.1, prove that
(y − ŷ) ⊥ (ŷ − µye), where ŷ = Ax̂ in which x̂ is the associated
squares solution, and µ = µy = µŷ.

4.4.3. For the ordinary least squares problem, let εi be the ith error (the
vertical deviation from the least squares line) as depicted in Figure 4.4.1
on page 478. Prove that

∑
i εi = 0.

4.4.4. Hooke’s law says that the displacement y of an ideal spring is propor-
tional to the force x that is applied—i.e., y = kx for some constant k.
Consider a spring in which k is unknown. Various masses are attached,
and the resulting displacements shown in Figure 4.4.7 are observed. Us-
ing these observations, determine the least squares estimate for k.

x (lb) y (in)

5 11.1
7 15.4
8 17.5
10 22.0
12 26.3

x

y

Figure 4.4.7: Hanging spring
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4.4.5. Show that the slope of the line that passes through the origin in R2 and
comes closest in the least squares sense to passing through the points
{(x1, y1), (x2, y2), . . . , (xm, ym)} is given by β =

∑
i xiyi/

∑
i x

2
i .

Caution! The result of Exercise 4.4.1 does not apply to this case.

4.4.6. A small company has been in business for three years and has recorded
annual profits (in thousands of dollars) as follows.

Year 1 2 3

Sales 7 4 3

Assuming that there is a linear trend in the declining profits, predict the
year and the month in which the company begins to lose money.

4.4.7. An economist hypothesizes that the change (in dollars) in the price of a
loaf of bread is primarily a linear combination of the change in the price
of a bushel of wheat and the change in the minimum wage. That is, if B
is the change in bread prices, W is the change in wheat prices, and M
is the change in the minimum wage, then B = αW +βM. Suppose that
for three consecutive years the change in bread prices, wheat prices, and
the minimum wage are as shown below.

Year 1 Year 2 Year 3

B +$1 +$1 +$1

W +$1 +$2 0$

M +$1 0$ −$1

Use the theory of least squares to estimate the change in the price of
bread in Year 4 if wheat prices and the minimum wage each fall by $1.

4.4.8. Consider the problem of predicting the amount of weight that a pint
of ice cream loses when it is stored at low temperatures. There are
many factors that may contribute to weight loss—e.g., storage temper-
ature, storage time, humidity, atmospheric pressure, butterfat content,
the amount of corn syrup, the amounts of guar gum, carob bean gum,
locust bean gum, cellulose gum, and the lengthly list of other additives
and preservatives sometimes used. Conjecture that storage time and
temperature are the primary factors, so to predict weight loss make a
linear hypothesis of the form

y = β0 + β1x1 + β2x2 + ε,
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where y = weight loss (grams), x1 = storage time (weeks), x2 = storage
temperature ( oF ), and ε is a random variable to account for all other
factors. Assume that E[ε] = 0, so the expected weight loss at each
point (x1, x2) is E(y) = β0 + β1x1 + β2x2. An experiment in which
values for weight loss are measured for various values of storage time
and temperature as shown below.

Time (weeks) 1 1 1 2 2 2 3 3 3

Temp (oF ) −10 −5 0 −10 −5 0 −10 −5 0

Loss (grams) .15 .18 .20 .17 .19 .22 .20 .23 .25

Using this data, estimate the expected weight loss of a pint of ice cream
that is stored for nine weeks at a temperature of −35oF. Then use the
coefficient of determination to gauge the goodness of fit.

4.4.9. After studying a certain type of cancer, a researcher hypothesizes that
in the short run the number (y) of malignant cells in a particular tissue
grows exponentially with time (x). That is, y = β0e

β1t. Determine least
squares estimates for the parameters β0 and β1 from the researcher’s
observed data given below.

t (days) 1 2 3 4 5

y (cells) 16 27 45 74 122

Hint: What common transformation converts an exponential function
into a linear function?

4.4.10. For A ∈ Fm×n and y ∈ Fm, prove that x2 is a least squares solution
for Ax = y if and only if x2 is part of a solution to the larger system

(
Im×m A
A∗ 0n×n

)(
x1

x2

)
=

(
y

0

)
.

Note: It is not uncommon to encounter least squares problems in which
A is large and sparse (mostly zero entries). For these situations the
system above may contain significantly fewer nonzero entries than the
system of normal equations thereby helping to mitigate memory require-
ments, and it circumvents the need to explicitly form the product A∗A
that has inherent numerical sensitivities as explained on page 484.
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4.4.11. Rank Deficient Models. In multiple regression models y = Xβ + ε as
described on page 486 it can happen that the matrix Xm×(n+1) is rank
deficient (i.e., rank (X) < n + 1). Consequently, the normal equations

XTXβ̂ = XTy do not have a unique solution so that at any given point
(x1, x2, . . . , xn), there are infinitely many different estimates

Ê[y] = β̂0 + β̂1x1 + · · ·+ β̂nxn.

To remedy the situation, points at where estimates are made must be

restricted. Prove that if t =

 1
t1
.
.
.
tn

 ∈ R (XT
)
, and if β̂ =

 β̂0

β̂1

.

.

.
β̂n

 is

any least squares solution, then the estimate defined by

Ê[y] = β̂0 + β̂1t1 + · · ·+ β̂ntn = tT β̂

is unique in the sense that Ê[y] is independent of which least squares

solution β̂ is used.

4.4.12. Using least squares, first fit the following data

x −5 −4 −3 −2 −1 0 1 2 3 4 5

y 2 7 9 12 13 14 14 13 10 8 4

with a line y = β0 +β1x and then fit the data with a quadratic function
y = β0 + β1x + β2x

2. Determine which of these two curves best fits
the data by computing the error sum of squares and the coefficient of
determination in each case. (See the note in Exercise 4.4.13.)

4.4.13. Let x̂ be the unique least squares problem associated with an inconsis-
tent system Ax = y in which rank (Am×n) = n.

(a) Explain why the error sum of squares given in (4.4.5) on page
480 can be expressed as

SSEA =
∑
i

ε2i = ‖y −Ax̂‖22 = ‖(I−PA)y‖22 ,= yTy − yTPAy

where PA is the orthogonal projector onto R (A).
(b) Prove that if A is augmented with a column c to produce

B = [A | c] with rank (B) = n + 1, and if SSEB is the error
sum of squares for the least squares problem associated with
Bx̃ = y, then SSEB ≤ SSEA, with equality holding if and
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only if cTy = cTAx̂ = cTPAy, where x̂ is the least squares
solution for Ax = y. Hint: Recall Theorem 2.3.9 on page 165.

Note: This means that except for a rather special case, addition of
variables to a linear regression model will reduce the error sum of
squares, and the coefficient of determination r2 = 1−SSE/SST

will increase because SST = ‖y − µe‖22 depends only on y.
This was illustrated in Exercise 4.4.12.

4.4.14. Prove that for the standard linear model in (4.4.18), an unbiased esti-
mator for σ2 is given by

σ̂2 =
yTQy

m− n− 1
, where Q = I−XX†.

Hint: Recall that the trace of an idempotent matrix is its rank (see
Exercise 4.2.21, page 449), and use the fact that for a matrix Z = [zij ]
of random variables, E[Z] is defined to be the matrix whose (i, j)-entry
is E[zij ].




